نظم المعلومات
والحاسبات الإلكترونية

مكتبة غريب
نظام المعلومات والحسابات الإلكترونية

نظرية والتطبيق

141

لواء

دكتور أحمد أنور زهران

الناشر

مكتبة غريب

141
شايع كاهل مدين (إليجال)

تخصير 19117
بسم الله الرحمن الرحيم

قل هَل يَسْتَوِي الَّذِين يَعْلَمُونَ وَالَّذِين لَا يَعْلَمُونَ
(الزمر ۹)
صدق الله العظيم
المحتويات

النوع الصفحة
مقدمة 7
علم المعلومات 9
نظام المعلومات 10
معالجة المعلومات 21
حركة المعلومات 25
تمثيل المعلومات 31
التشغيل الآلي للمعلومات 39
التحكم الآلي ونظام المعلومات 63
استغلال نظم المعلومات 71
دليل المصطلحات 93
المراجع 97
مقدمة

إن التقدم الحضاري الذي يشهده عالمنا اليوم، يرجع الفضل الأكبر فيه لنظم المعلومات، التي حققت بها أبحاث وابتكارات الحواسب والتحكم الآلي، إنجازات ضخمة للبشرية، في مجالات الحياة على الأرض وفي غزوة الفضاء.

لقد أصبح مقياس تقدم أي مجتمع، رهناً بمدى اعتياده على نظم المعلومات، في التخطيط لمشاريعه في الحاضر وفي المستقبل، وكما كان للحوار الأول، في توفير الجهد العضلي للإنسان في سبيل حياة أفضل، فاليوم يرجع الفضل لنظم الحواسب والتحكم الآلي، في توفير الكثير من الجهد الذهني له، للدفع لأفكار رائعة، تتطلب بها جنوب هذا الكون، الأمر الذي سوف يحقق له المزيد من الإنجازات، التي سوف ترتفع بقيمة الحضارية في مستقبل حياته، إلى درجات طموحة، لا يعلم مداها إلا الله، والله ولي التوفيق.

القاهرة / 1989

لواء

دكتور أحمد أنور زهراوي
علم المعلومات

- Data Capturing and Input Preparation
- Processors
- Input Devices
- Output Devices
- Magnetic Storage Files
علم المعلومات

علم المعلومات (1) هو علم تخطيط الحاضر والمستقبل الذي لا يتحقق بهدف نجاح أي عمل في الاقتصاد أو السياسة أو الحرب، وهو يتضمن الأساليب والنظموات المختلفة لحصّر المعلومات وتبويبها ومعالجتها بغية التوصيل نتيجة أو هدف محدد.

إن التخطيط لدراسة موضوع ما، يتضمن حصر المعلومات التي يشتمل عليها الموضوع ومعالجةها في خمس خطوات متباثة لاستغلال بغير أدوات الحل هي:

1- تعريف الموضوع وشرحه بشكل كاملاً ووضوح.

2- تحليل الموضوع والعناصر التي يتضمنها، والتي عن طريق معالجتها يصير التوصل للحل الشامل.

3- وضع برنامج عمل يتضمن سلسلة متابعة من العمليات التي يجب أن يمرها الحل.

4- تنفيذ العمليات التي سبق تحديدها في البرنامج.

5- حفظ وثائق الموضوع حسب ترتيب خطوات الحل، حتى يمكن الرجوع إليها للاستشارة في دراسة موضوعات مشابهة، بما يوفر جهد إعادة الدراسة.

لقد أدرك الإنسان منذ القدم أهمية التخطيط لأي عمل قبل الشروع فيه، وهو قد مارس هذا التخطيط على طريقة حصر المعلومات عن كل الإمكانات والمواد التي توفر على تنفيذ هذا العمل، والتي يمكن تشغيلها بوساطة جهاز المعلومات المتوفّر لديه، وبين شكل (1) العلاقة بين حجم المعلومات، ونطاق تشغيلها، والتي عن طريقها يمكن تحديد حجم المعلومات الأمثل، الذي يجب أن يشغله جهاز المعلومات.

إن الإنسان في تطعه لحياة أفضل، ابتدأ أساليب وأدوات متنوعة لمعالجة المعلومات، بهدف أن يرفع عن كاهلنا، عبء القيام بالعمليات التي تدعو الحاجة اليومية لتكرارها، وتذكر في نفسه السالم.

- 11 -
لقد ابتدأ في سبيل ذلك جداول الجماع والطرق والضرب والقسمة الجاهزة، ليقدم
إليها كلما احتاج إلى معرفة نتيجة إحدى العمليات الحسابية، دون أن يكد نفسه مشقة
إجرائها كل مرة، كا ابتدأ المسيرة الحاسعة التي تعتمد في تصميمها على نظرية
اللوجرتيمات، والتي مكتبة من إيجاد المضاعفات والجذور دون مشقة.

وفي القرن السابع عشر، توصل لاحترام ماكينة الجماع المعروفة التي تطورت مع
الآن، وأضيفت إليها عمليات حسابية أخرى، في عام 1822، بدأت محاولات لم تنجح
لتطوير هذه الماكينة لقيم بحل المعادلات الرياضية.

وفي عام 1876، استطاع أحد العلماء أن ينبدع وسيلة ميكانيكية لمعالجة المعلومات
بتسجيلها في صورة ثقوب على شريحة ورقية مستطيلة، بحيث يشير موضع كل ثقب إلى
معنى عدد، ثم تنم تغذية هذه الشريحة داخل آلية مصممة خصيصًا للإحصاء بالثقوب
وفهم معانيها، بالشكل الذي ي يستطيع الآلة تبويض البيانات ميكانيكياً. لقد تطورت
هذه الآلة إلى ما يعرف بالحواسب الآلية، وتطورت الشريحة الورقية إلى ما يعرف الآن
بالبطاقة المفقودة.
إن قيام الحرب العالمية الثانية، بما فرضه من احتياجات عاجلة ملحة، أدت إلى تطوير الطريقة الميكانيكية لمعالجة المعلومات، واستبدال حركتها البطيئة بالسرعة الهائلة التي يوفرها استخدام الدوائر الإلكترونية. لقد أدى هذا إلى ظهور أول حاسب إلكتروني عام 1948 الذي يمكن من زيادة سرعة حركة المعلومات داخل الآلة.

لقد طور أسلوب عمل الحاسب بعد ذلك، بتطبيق فكرة البرنامج المخزون داخل ذاكرته، حيث يجهز البرنامج في شكل سلسلة متعاقبة من التحليلات، يقوم الحاسب بتقديمها على التوالي وبسرعة فائقة، بحيث أصبح في مقدوره اتخاذ قرارات بسيطة وتعديل بعض التحليلات المغطاة له.

إن عصر ميكنة العمل الذهني، قد فرض نفسه على كل الأنشطة المتعبة للحياة العصرية في العلوم والتكنولوجيا، الأمر الذي يعني أن يلم كل من يتعامل مع هذه الأنشطة بأسس وقواعد وتطبيقات علم المعلومات، علم الحساب والمنطق، اتخاذ القرارات الفورية.
نظم المعلومات
نظام المعلومات

تخطيط المعلومات في حصرها وتبويها وتحليلها لمجموعة من نظم التسجيل المعالجة الحسابية والمنطقية واستخلاص النتائج، يطلق عليها نظم المعلومات (1). وهم آلياً بفضل
الاستخدام العمل لنظم الحواسيب (2) والتحكم الآلي (1) (شكل 2).

شكل (2) نظم المعلومات

لقد تمخض تطور العلوم الإلكترونية في الربع الأخير من هذا القرن، عن ابتكار الحاسب الإلكتروني أو العقل الإلكتروني أو الكمبيوتر، وهي كلها أسماء مرادفة لآلة تستطيع أن تقرأ المعلومات وكتبها، وتقوم بالعمليات الحسابية والمنطقية، كأن لها القدرة على اختزان كمية هائلة من المعلومات، يمكن استرجاعها ثانية كلية أو على أجزاء، كما تقصي الحالة عند الضرورة.

- 17 -
أصبحت العقول الإلكترونية مسمية عصرنا الحالي، عصر انفجار أو ثورة المعلومات، التي لولاها لما أمكن إجراز أي تقدم عن طريق التقييم الصحيح للمعلومات واتخاذ أفضل القرارات للإفادة منها. تمر المجتمعات العصرية في سبيل ارتفاعها نحو التطور، بعده مرحل، ترتبط ارتباطًا وثيقًا بمدى اعتيادها على نظام المعلومات في تخطيط حياتها كما يبين من شكل (3 أ) الذي يوضح هذه العلاقة، التي تبدأ بمرحلة الاعتياد الجزئي على نظم المعلومات، وتنتهي بمرحلة الاعتياد الكلي عليها، والتي فيها تحتوي نظام المعلومات كل الأنشطة الحضارية للمجتمع.

شكل (3 أ) نظام المعلومات والمجتمع

شكل (3 ب) تطور استخدام نظم المعلومات في مجالات النشاط المختلفة
أصبح العقل البشري، يقف اليوم عاجزا أمام استيعاب هذا السيل، العارم من المعلومات، الذي أحدثه تطور العصر حيث يتعذر عليه اتخاذ قرار سليم عند تقييم أكثر من عشرة عناصر، قد تكون متناضجة حينا، وهي بالقطع متباينة أغلب الأحيان. إن العقول الإلكترونية تضطلع بهذه المهمة الآن، وهي تعتمد أساسا على استخدام نظرية الاحتمالات (٢٦) وقوانينها المعقدة، حيث تؤدي العديد من العمليات الحسابية والمنطقية في ثوان بدلاً من ساعات وأيام تلزم العقل البشري، وللمقارنة فإن عقلًا إلكترونيًا يعمل بسعة ٤٠٠،٠٠٠ عملية في الثانية يعادل في إنتاجه عقلًا بشريًا يعمل ١٢ ساعة يومياً لمدة مائة عام.

إذن نعيش اليوم عصر العقول الإلكترونية التي أصبحت ضرورة لغنى عنها في مجالات

- الاستخدام المدني والعسكري.

ففي المجال المدني، تقوم العقول الإلكترونية بضبط الحسابات المصرفية والعمليات الإحصائية، وهي تؤدى خدمات ممتازة في قطاعات البحث العلمي، والصناعة، الزراعة، الاقتصاد، البترول، النقل، الطيران، الفضاء، كما ترعي التقدم في تخصصات الفلك، والأرصاد، والطب، الهندسة، العلوم، الفنون، الآداب.

وفي المجال العسكري، تقوم العقول الإلكتروني بالعديد من الخدمات في قطاعات الصناعات الحربية، تصميم الأسلحة والمعدات، بحوث العمليات، تحليل الشاشة العسكرية للقوات ونلعدو، وإدارة عمليات القتال.

وياختصار، فكل ما حققه البشرية من تقدم ورقي في أربع الأشهر من هذا القرن، في مجالات النشاط المختلفة، على الأرض، وفي أرجاء الفضاء الكوني، إنها يرجع الفضل الأكبر فيه للعقل الإلكترونية، أجهزة العصر لمعالجة المعلومات والتحكم الآلي (١).
معالجة المعلومات

القصد بمعالجة المعلومات (1) هو إجراء سلسلة متتابعة من الإجراءات أو العمليات على معلومات محددة خاصة بموضوع مابغرض تحقيق نتائج معينة بذلك بدقة وتوفير النتائج للعمل.

يتم التوصل للحل، بخمس خطوات رئيسية، سبق الإشارة إليها عند التعرض لعلم المعلومات، يقوم البشري بعدة منها، وهي التعرف بالموضوع وتحليل عناصره ووضع برنامح الحل له، ويقوم الحاسب بتحليل الخلاطتين التاليةين، وهما تنفيذ برنامج الحل وحفظ الوثائق.

يتلقى الحاسب المعلومة، ثم يقوم بإخراج النتائج، بعد انتهاءه من تنفيذ العمليات، ومعنى آخر فإن دورة الحاسب تبدأ بتغذية المعلومات (2)، وببرنامج العمل الذي يقوم بمفاعضته بمعالجة هذه المعلومات حسبا أو متغريًا، وينتهي بإخراج النتائج (3) في الصورة المحددة لها كما هو مبين في شكل (4).

![Diagram](image_url)

شكل (4) دورة الحاسب

إذاً هناك طرق مختلفة تغذية الحاسب بالمعلومات، وتاريخ إخراج النتائج بعد المعالجة، إلا أن دراسة أي موضوع بوساطة الحاسب تتبع دائما خط عمل واحداً، بدأ بدخول المعلومات، ثم معالجتها، وينتهي بخراج النتائج.

قد لا يقوم الحاسب بتأدية معالجة المعلومات، بمعنى أن دوره قد يقتصر على تخزين المعلومات على حالتها التي تم تغذيتها بها، والاحتفاظ بها في الذاكرة، لحين إخراجها عند الحاجة في الشكل الذي أدخلته بها، فيني بعمليه استرجاع المعلومات (1) (5).

وأخيراً طريقة عمل الحاسب في معالجة الموضوعات، تشبه تماماً طريقة عمل العقل البشري، فعند قيام إنسان بدراسة موضوع ما، فإنه يتلقي عن طريق عينيه أو أذنيه.
(وحدات دخول) بيانات المعلومات التي يتضمنها الموضوع، ونواع العمليات المطلوبة
إجراءها عليها، حيث تنقل المعلومات إلى ذهن لذي يناظر الحاسب أو الكمبيوتر، وهذا
بدوره، يقوم بمعالجة المعلومات الداخلة إليه، وإجراء العمليات المطلوبة منها عليها، ثم
يتوリ نقل النتيجة، لإعلانها عن طريق الكتابة باليد، أو الكلام بالفم (شكل 5) واليد
والقدم في هذه الحالة، نأملان وحدة خروج النتائج في الحاسب.

شـكل (5) دورـة المعلومات في العقل البشـري
إن العقل الإلكتروني، وإن كان يتألف العقل البشري في طريقه معالجة المعلومات،
إلا أنه ليست له القدرة على التفكير الذاتي أو التصور، بمعنى أنه لا يستطيع أن يضع
نفسه تعليقات معالجة للمعلومات، بل يجب تجهيز برامج الحاسب مثل بوساطة
الإنسان، ولكن مسابق هذا يتميز بسرعة الهائلة في تنفيذ التعليقات، وهو لا يمل من
معاوية تكرار التنفيذ، كما أن نسبة وقوعه في الخطأ، تقل كثيرا عن تلك التي اشتهى بها
العقل البشري.

- 24 -
حركة المعلومات

يشتمل أي نظام لمعالجة المعلومات على دورة أساسية (10) تسير فيها حركة المعلومات (11) دخولًا وخروجًا، ماراة بمواقع معالجة رئيسية للنظام ببيانات كالآتى:

1 - وحدة تغذية.
2 - وحدة تشغيل وتحكم مركزى (12).
3 - وحدة تخزين المعلومات أو ذاكرة (13).
4 - وحدة خروج النتائج.

إن وحدة التشغيل والتحكم المركزى، هي الجزء الإيجابى الذي يتلقى التعليمات، ويستوعبها ويعمل بالعمليات الحسابية والمنطقية، أما وحدة تخزين المعلومات أو الذاكرة، فهي الجزء السلبي في النظام، الذي يتلقى المعلومات ويستغنى، ورغم تصرف وحدة التشغيل المركزى، التي تقوم بمعالجة المعلومات، وإعادة النتائج للذاكرة، تكون جاهزة للخروج، وعلى هذا فإن مثيل حركة المعلومات داخل نظام المعالجة على الوجه التالي (شكل 6):
ومنه يتبين أن المعلومات الداخلة للمعالج داخل النظام، أو الخارج منه، تُقسم إلى طريقة الذاكرة. كما يتبين أن وحدة التشغيل المركزية تُقسم من قسمين:

1 - قسم التحكم
2 - قسم الحساب والمنطق

يقوم قسم التحكم، وتفسير البيانات والبرامج، التي تم دخولها وتربيتها داخل الذاكرة في شكل مجموعات متميزة متعاقبة من الكليات، ثم يوجه جميع أجزاء النظام لعمل طبقاً لتعليمات البرنامج المغذي، كما هو مبين في شكل (7) إذا استدعى الأمر القيام بعملية حسابية، فإن قسم التحكم يوجه قسم الحساب للقيام بها، ويتولى ويمارقب التنفيذ وإعادة ال نتائج للذاكرة، وإذا احتوى البرنامج على تعليمات تضمن مقارنة منطقية، فإن قسم الحساب والمنطق يتولى يوجه من قسم التحكم، القيام بعملية المقارنة المنطقية، وإبداع النتائج في الذاكرة خلال قسم التحكم، فإذا كانت النتائج مطابقة لتعليمات البرنامج، يقوم قسم التحكم بالانتقال للمخططة التالية، حسب تسلسل البرنامج في الذاكرة، وهكذا.

شكل (7) التحكم المركزي في حركة المعلومات داخل نظام المعالجة.
وبحاخص، فإن حركة المعلومات داخل الحاسب، تسير وفق نظام حكم وثابت.

يبدأ بدخول المعلومات مجهزة في صورة نقلية، تحول إلى بطاقات أو أشرطة ورقية، أو على صورة نقل مغنطيسي فوق شرائط أو أسطوانات مغنطة، ويدخل مع المعلومات، التعليمات اللازمة لتشغيلها، حيث تعالج بواسطة وحدات التشغيل والتحكم المركز.

ثم تؤدي الذكاء بنتائج المعالجة، لتتولى وحدات خروج النتائج إعلامها، في صورة تقارير مطبوعة، أو بطاقات، أو شرائط مثبتة، أو شرائط ممغذة، تسمح بالاستخدام كسجلات معلومات، يغذي بها الحاسب في عمليات تالية.
تمثيل المعلومات
تمثيل المعلومات

تمثيل المعلومات (1) يعني معالجتها آليا وفق نظام كودي معين، لتلائم والتشغيل
بوساطة الحواسيب. تتضمن المعالجة الكودية للمعلومات تتضمن استخدام الرموز كوسيلة
للتفاهم بين البشر والآلة، وهذا يتم عن طريق استخدام عدة وسائط، تناسب والتعبير
الرمزى عن المعلومات، بالترتيب أو الغنتة، تبعًا لطبيعة الوسائط المستخدمة.

إن تقنية المعلومات للحاسب، لا تتم مباشرة، لكنها تتم عن طريق أجهزة دخول أو
وحدات تقنية، تقوم بقراءة الرموز المجلدة على الوسائط، ثم تحولها للبئات كهربائية،
وفي ترتيب معين تدخل به إلى الكمبيوتر.

أ- تمثيل المعلومات بالرموز.

استخدم البشر نظام متعدد، لتوزيع المفاهيم التي يريدون التعبير عنها، فقد استخدم
العرب 28 رمزاً، للتعبير عن حروفهم الهجائية، ويستخدم الغربيون 26 رمزاً، للتعبير
عن الحروف اللاتينية، كما وضع الهنود عشيرة رموز، للتعبير عن الأعداد من (0) إلى
(9) وهكذا ... فإن استخدام أي عدد من الرموز، للتعبير عن مفاهيم لغة ما، حسابية
أو منطقية، يجعل هذه اللغة قابلة للتعبير، سهلة في التداول.

إن نظام الحساب العشري الذي يشيع استخدامه في العالم حالياً، والذي وضع الهنود
أسسهم، كما سبق بيانه، نتيجة لاستخدام أصبي البدين في العد، لا يعد النظام الحسابي
الوحيد الذي يمكن استخدامه.

1- فقد وجد نظام الحساب العشري، الذي استخدمه قبائل الهنود الحمر، والذي فيه
يأتي بعد الأعداد، رقم العشرين بدلا من العشيرة وبعد العشرينات يأتي رقم
(20 × 20) بدلا من (10)، وهذا النظام العددي يحتوي على 20 رمزاً للأعداد.
2- كا يوجد نظام الأثنى عشر (الدستة) الذي لايزال يستخدم حتى الآن والذي يحتوي
على 12 رمزاً للأعداد.
- كما يوجد النظام الواحد الذي يكتفي برمز واحد لتمثيل الأعداد على النحو (1)، (11، 111، 1، 11، 111)، لتمثيل الأعداد (1، 2، 3، 4) وهكذا على التوالي.
- كما يوجد حاليا النظام الثنائي ، للتعامل مع الحواسب الذي يكتفي بالرموز (1)، (0) لتمثيل البيانات ، على نحو ماسوف يبين عند شرح هذا النظام.

ب - النظام الثنائي.

استخدم الدكتور نيمان، لأول مرة عام 1947، النظام الثنائي (10) بدلاً من النظام العشري (10) لتسهيل عمل الحواسب الآلية بما يهمه من قيمتين (1)، (0) تمثلان حالات دينية، حالة مقدمة لقيمة الواحد، وأخرى مقدمة لقيمة الصفر، تعبيرا عن حالة الوجود أو عدمه على نحوين:

* وجود أو عدم وجود نشطة كهربيّة.
* وجود أو عدم وجود نقطة مغلفة.
* وجود أو عدم وجود نوء بالبطاقة أو الشريط الرقبي.

إن الرمزين (1)، (0) في النظام الثنائي، يعرفان باسم الأرقام الثنائية (10)، ويتم التعبير عنها في لغة الحواسب باللفظ المختصر بت (10). إن الطرق التي تستخدم لتمثيل المعلومات داخل الحاسب، هي نظام الشفرة الخاص به، وهي تحدد لكل حرف أبجدية رقم أو علامة، مجموعة من الأرقام الثنائية، مرتبة وفق ترتيب خاص، يحدد عدد الأرقام في مجموعة نظام الحاسب الواحد حسب نوعه:

* فهناك نظام الحاسب، تنتظم وحدات مجموعة من ستة أرقام ثنائية أو عناصر، يمكنها تمثيل 64 رمز معلومة (10..0) تطابق الحروف والأرقام والعلامات التي يعالجها الحاسب، كأ هو مبين في جدول (1).

* وهناك نظام آخر، تنتظم وحدات مجموعة من سبعة أرقام ثنائية، يمكنها تمثيل 128 رمزًا (10).

* وهناك نظام ثالث، تنتظم وحدات مجموعة من ثمانية أرقام ثنائية، يمكنها تمثيل 256 رمزًا (10)، وهذا العدد الكبير من الرموز، يكفي ويزيد، لتمثيل الحروف الأبجدية والأرقام العشري والأعداد الرياضية مثل: =، <، >، +، -، .، .، .، .،

علاوة على العلامات الأخرى الشائعة الاستخدام في تداول المعلومات.
جدول (1) كود رموز ذو ستة عناصر للاستخدام مع حاسب

يبرمج بائت مكونة من ست حلقات مغشدة

<table>
<thead>
<tr>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>c</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CLR</td>
<td>0</td>
<td>NUL</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>ADD</td>
<td>1</td>
<td>A</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>STI</td>
<td>2</td>
<td>B</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>SUB</td>
<td>3</td>
<td>C</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>MPY</td>
<td>4</td>
<td>D</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>TRN</td>
<td>5</td>
<td>E</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>TRU</td>
<td>6</td>
<td>F</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>SLL</td>
<td>7</td>
<td>G</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>SRL</td>
<td>8</td>
<td>H</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td></td>
<td>9</td>
<td>I</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td></td>
<td>10</td>
<td>J</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td>11</td>
<td>K</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td></td>
<td>12</td>
<td>L</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td></td>
<td>13</td>
<td>M</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td></td>
<td>14</td>
<td>N</td>
<td>&</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td></td>
<td>15</td>
<td>CL</td>
<td>HLT</td>
<td></td>
</tr>
</tbody>
</table>

* مجموعة الحروف الواردة في بعض مربعات الجدول تدل
على اختصارات لمعان مستعملة أو مأخوذة من اللغة الإنجليزية

إن المجموعة الواحدة للأرقام الثنائية في أي نظام للحاسوب هو الوحدة الصغرى
المكونة له، ويطلق عليها لفظ "بإت" (34)، والبإت الواحد مكون من عدد من الحلقات
المغشدة، ينظر عدد الأرقام الثنائية، أو العناصر المكونة لوحدة مجموعة البإت.
إن الحاسب ينظم في النهاية عدداً ضخماً من وحدات البيات، تكون الهيكل الترميبي والوظيفي له، فيما يشبه جمعاً ضخماً لأعمال الحساب المادي (32) حيث ينظم كل عش عدد من وحدات البيات، تستطيع تمثيل عدد من الحروف والأرقام، التي تمثل معلومة بذاتها، وكذلك البيئة في جدول (1). هذا لكل عش من هذه الأعشاب، عنوان ثابت أو رقم يعرف به، أثناء التعامل مع الحاسب.

ج - التعبير الثنائي عن الأعداد والحروف.

إن التعامل مع الحواسيب كـ ما سبق أن بيناً أساسه حالتى الثنائية التي تعبير عن حالات محتملتين فقط للوجود أو عدمه، فدوائر الحاسب الكهربائية، مثلها، إما أن تكون مقفلة فائضة لمباته أو تكون متلفحة فائضة لمباته، كذلك الحالة بالنسبة لحالات المغناطيسية، التي تكون إما مغناطة في اتجاه عقرب الساعة أو عكس اتجاه عقرب الساعتين.

ويحكى تحكم الحالة الثنائية نظام عمل الحاسب في تمتلئه برموز المعلومات على النحو التالي.

عند تمثيل الأعداد العشرية داخل الحاسب، تخصص مجموعة من أربع حلقات مغناطيسية، من مجموعة حلقات البيات لهذا الغرض، حيث تمثل الحلقة الأولى الرقم 1 وتمثيل الثنائية الرقم 2 (12)، والثالثة تمثل الرقم 3 (23)، والرابعة تمثل الرقم 4 (32)، وعند مغناطة أي حلقة من هذه الحلقات في اتجاه عقرب الساعتين، فإن ذلك يعني احتساب الرقم الذي تمثله، وعند مغناطة عكس اتجاه عقرب الساعتين، فإن ذلك يعني عدم احتساب هذا الرقم كما هو مبين في شكل (8).

شكل (8) النظام العشري يعبر عنه النظام الثنائي داخل ملفات البيات.

إن مجموعة الحلقات البيئة بالشكل، تمثل الرقم 9 حيث تحتسب أرقام الحلقات الأولى والرابعة المغناطيسين في اتجاه عقرب الساعتين، ولا تحتسب أرقام الحلقات الثنائية والثالثة.
الممغنطين عكس اتجاه عقرب الساعة، وهكذا فإن مجموعة الحلقات هذه تسمح بالممغنطة كتلبية. أما الأعداد من صفر 15، فإن جميع الحلقات ممغنطة عكس عقرب الساعة، حتى الأعداد 15، حينها تكون جميع الحلقات ممغنطة في اتجاه عقرب الساعة (1 + 2 +4 +8 = 15)، والجدول رقم (1) يوضح كيفية تمثيل هذه الأعداد داخل الحاسب بالتعبير الثنائي.

إن هناك عددًا من أنظمة الكودية أو الشفرات للتمثيل الثنائي عن كل حرف أو رقم أو علامة أو أي بيان آخر، بما يقابلهم من الأرقام الثنائية 0،1، وأظهر هذه الشفرات وأكثرها شيوعًا تلك المعروفة باسم إسديك، وهي كلمة مختصرة للتعبير عند الشفرة التبادلية الموحدة للنظام العشري المعبر عنه بنظام الثنائي.

في هذه الشفرة، يقسم البابت المكون من ثماني حلقات مغناطيسية إلى قسمين، قسم يضم الحلقات الأربعة اليمنى، وهو خاص بتمثيل الأرقام، وقسم يضم الحلقات الأربعة اليسرى، وهو خاص بتمثيل الحروف، وترقم حلقات البابت من يسار إلى يمين بالرموز من صفر إلى سبعة كا هو مبين في شكل (9).

![شكل (9)]: بابت مكون من ثمانية حلقات لتمثيل الأرقام والحروف

إن هذا البابت يمثل الأرقام في الحلقات الأربعة اليسرى منه، حيث تحمل الحلقات الأربعة اليمنى الخاصة بالحروف، الرقم الثنائي 1، رقم 8 مثلاً يمثل البابت بالتكوين الثنائي 1000، وعند تمثيل الحروف الأبجدية والعلامات الخاصة فإنها تمثل بتكوينات تنتظم الحلقات الثنائية مجتمعة، فالحرف أ مثلاً، يمثل البابت بالتكوين الثنائي 0100 وحـكذا.

إن نظام التمثيل الكودي هذا، هو أحد أنظمة المعرفة لتكويد المعلومات التي تستخدم تكوينات مختلفة من الأرقام الثنائية للتعبير عن الأعداد والحروف والعلامات داخل...
الحاسب.

إنه التعبير عن المعلومات وتمثيلها داخل ذاكرة الحاسب يتم عن طريق مجموعات الحلقات الممغطسة، كما سبق أن بنيا، أما بالنسبة لوحدات التغذية، فإن التعبير عن المعلومات يتم عن طريق الوسائط، في صورة نقوب أو نقط ممغضة، وفي نظام تمثيل وطرق تفهم وحدات التشغيل والتحكم المركزي للحاسب التي لا يرى التعامل معها.

1. تمثيل المعلومات على الوسائط.

إن أهم الوسائط المستعملة وأقدمها وأكثرها شيوعاً، هي البطاقات المغطسة(1)، التي لا يعقلها سوى بطئا النسي في نقل المعلومات، وعرضها للنفث من كثرة الاستعمال، ومن الوسائط الأخرى الشائعة الاستخدام أيضاً، الأشرطة الورقية المتطغسة(2) والأشرطة والأقراس والأسطوانات المغطسة(3).

يتم تمثيل المعلومات على هذه الوسائط بطرق مختلفة، فهو يتم بالنسبة للبطاقات والأشعة الورقية، عن طريق عمل ثقوب في أماكن محددة بها، أما بالنسبة للوسائط المغطسة، فيتم استخدام تقنيات تسجيل نقاط ممغضة معينة فوقها، هذا ووضع تسجيل النقوب والنقاط الممغضة على الوسائط، يحدد النظام الكودي المخصص لكل وسيلة.

إن لكل وسيلة شفرة خاصة به، التي تستخدم لفهم رموز البيانات المسجلة، ووحدة التغذية مصممة، تستطيع قراءة رموز هذه الشفرة المسجلة على الوسائط، وهي تقوم بتحويلها إلى نماذج كهربائية، تقوم بنسخ نقطة الحلقات المغطسة للذاكرة، بطريقة كن لوحدة التشغيل والتحكم المركزي فهمها والتعامل بها.

أما وحدة الخروج، فهي تنقل النتائج في صورة نماذج كهربائية من ذاكرة، وتعمل على توصيلها إلى رموز الشفرة الخاصة بتمثيل المعلومات على الوسائط.

2. تمثيل المعلومات داخل الحاسب.

تمثيل المعلومات داخل الحاسب في وحدات التشغيل المركزي والذاكرة، باستخدام مكونات كهربائية متعددة، مثل الحلقات الممغضة والترانزستور والأسلاك و. و. إ.، حيث يتم تخزين المعلومات واتخاذها بين وحدات الحاسب، في صورة نماذج كهربائيه، على نحو أساسيين عند عرض التشغيل الآلي للمعلومات.
التشفير الآلي للمعلومات
التشغيل الآلي للمعلومات

تعتبر الحواسيب الآلية ولادة الثورة الصناعية والتكنولوجية التي بدأت في القرن الثامن عشر. إن هذه الثورة قد أظهرت الحاجة لاستخدام الحواسيب الآلية بدلاً من النظم اليدوية في مجال تشغيل المعلومات.

شهد مطلع القرن الحادي والعشرين تطور نظم الحواسيب الآلية لتشغيل المعلومات، من ميكانيكية إلى كهربائية ثم إلكترونية، حيث عرفت أولى الأجهزة الإلكترونية لتشغيل المعلومات في الثلاثينيات من هذا القرن. لقد طورت طريقة تشغيل نظام الحواسيب بعد ذلك، واستدامت الحركة البطيئة للمفاتيح في النظم الكهربميكانيكية، بالسرعة الهائلة للإلكترونات، التي يتيحها استخدام الدوائر والصمامات الإلكترونية، وقد حقق هذا سرعات هائلة لتشغيل المعلومات بوساطة الحواسيب، وصلت حتى آلاف المرات قدر السرعات السابقة، كما استحقت الحواسيب بقدرتها التحديزة هذه، أن تعرف منذ ذلك الوقت باسمها الشائع الذي أشتهر به حتى الآن، وهو العقول الإلكترونية.

إن التطور التكنولوجي الذي فرض تطور أساليب عمل الحواسيب على النحو المبين آنفاً، فرض أيضا الحاجة لأساليب متعددة لتشغيل المعلومات بوساطة الحواسيب، تتفق واحتياجات العصر، لقد تمثل هذا في ابتكار أنواع ثلاثة من الحواسيب، تختلف فيها بنية، تبعاً لطبيعة المهام التي تكلل إليها على النحو التالي :

1 - حاسب تماثلي (١٣١): يقوم بالتمثيل البياني والتحليل الرياضي للبيانات، طبقاً للبرامج المجهزة بها، وهذا النوع وإن كان محدود الاستخدام، إلا أنه ضرورة لاغنه عنها في البحوث الإحصائية والرياضية.

2 - حاسب رقمي (١٣٢): يقوم بالمعالجة الحسابية والمطية للمعلومات، على نحو ماتبين وماسبب يبين فيها بعد إن هذا النوع من الحواسيب هو أكثرها شيوعاً، نظراً لقدراته المتعددة التي تتبنا في الكم والكيف، والتي فرضت إنتاج نتائج متدفقة منه.
3 - حاسب مختلط (4) : يجمع بين الخصائص الوظيفية لكل من النوعين السابقين للحاسوب وهو يستخدم بشكل خاص في أعمال البحث العلمي والتطوير.

والحواسيب الآلية بحكم تنوء المهام التي تستطيع القيام بها، أصبحت تحتل في أحجام وجردات متغيرة، تتفق وطبيعة الاحتراج إليها. إن طبيعة الاحتراج هذه تفرضها اعتبارات شتى أهمها:

1 - حجم المعلومات اللازم تشغيلها: والتي بمقتضاها يحدث حجم وحدة التشغيل المركزية.

2 - طريقة التغذية وأنسبها: وهل تكون بوساطة البطاقة المنفية، أو الشريط المنقى، أو المغنط.

3 - طريقة الاستعانة بالذاكرة: وهل تكون بالاعتماد على الشريط المغناطيس، أو الأقراص والأسطوانات المغناطيسية، وذلك تبعًا لطبيعة نظام المعلومات التشغيلة، وهل هي مسلسلة أو عشوائية.

4 - طريقة تسجيل النتائج: وهل يكون في شكل تقارير متغيرة تقوم بها وحدة طباعة سريعة، أو يكون في شكل بيانات تقوم به وحدة رسم بيانات، أو يكون في شكل مرتين تقوم به وحدة تلفزيون مرتين.

5 - مصدر المعلومات: وهل توجد داخل دائرة عمل الحاسب، أو هي في مكان بعيد عن الحاسب. إن وجود مصادر المعلومات بعيدا عن الحاسب، يستلزم استعانة الحاسب بوحدات تلفحندية مبتكرة، تقوم بتلقى البيانات من مصادرها على بعد، ثم تتولى إدخالها مباشرة إلى الحاسب، ليقوم بمعالجةها، ثم إعطاء النتائج، التي تعود ثانة لMitch هما الأصلية، عن طريق وسائل الاتصال السلكية أو اللاسلكية نفسها.

وهكذا، تنوع نتائج التشغيل الآلي للمعلومات أو الحواسيب، تبعًا لطبيعة الاحتراج إليها، وهي إن نوعت قدراتها، إلا أنها في النهاية تقوم بتشغيل المعلومات أولا، مرتكزة على ركيزة أساسية هما:

أولا: مكونات التشغيل، أو تجهيزات الحاسب (3).
ثانيا: برامج التشغيل، أو لغة عمل الحاسب (2).

كما يتبع التشغيل الآلي للمعلومات عددًا من الخطوات الأساسية ببيان كالتالي:

1- تسجيل المعلومات على الوسائط.
2- قراءة التسجيل.
3- تخزين المعلومات.
4- معالجة المعلومات.
5- تحليل النتائج.

يتبع أداء هذه الخطوات، والاستعانة بعدم وحدات الحاسب الآلي في ضوء الخيارات الآلية:

1- يقدر حجم وحدة التشغيل المركزية، حسب حجم البيانات اللازمة تشغيلها وحجم البرنامج.
2- يتم اختيار وحدات التغذية وأنسبها سواء بقراءة البطاقات المغناوية أو الورقية أو المغناطة.
3- يتم اختيار طريقة الاستعانة بالذاكرة الحاملة، تبعًا لطبيعة نظام المعلومات المضغوطة، مسلسلة أو عشوائية.
4- الاستعانة بوحدة الطباعة، تحديد طبيعة العمل، والسرعة الواجب توافرها لاختيار أنسب الطرز والسرعان.
5- العمليات الإحصائية والهندسية، قد تؤدي إلى إضافة وحدة رسم بياني، أو وحدة تليفزيون مرتدي، لرصد النتائج بيانيًا، وتسجيل التصنيفات تليفزيونية.
6- العمليات ذات الترابط البعيد، وقد تتطلب الاستعانة باجهزة مواصلات سلكية ولاسلكية، لتبادل البيانات على بعد.

علي ضوء هذه الاعتبارات جمعية، يتم اختيار وتقدير حجم ونوعية وحدات وجهزات الحاسب المناسبة كتلك المبينة بالشكل.
الأولى: تجهيزات الحاسب

"Hardware"

تضم الحواسيب عدداً من التجهيزات التي تقوم بتسجيل المعلومات ومعالجتها واستخراج النتائج. تشمل هذه التجهيزات، في أبسط صورها وحدة قراءة البطاقات المغناطيسية، تقوم باستقبال البيانات المجهزة وقراءتها، ووحدة تشغيل مركزية، وذاكرة مغناطيسية معددة السعة، ووحدة طباعة تقوم بتمثيل النتائج في صورة تقارير مطبوعة. إن تجهيزات الحاسب في النهاية لابد أن تضم عددًا من المكونات الأساسية، تنظم عدداً من الوحدات بياناً كالآتي:

أ - وحدات تجهيز معلومات (١٣) تضم وحدات لتثقيب وموافقة البطاقات أو الشرائط الورقية، أو للسجيل على الشرائط المغناطيسية.

ب - وحدات تغذية معلومات (١٣) تضم وحدات لقراءة البطاقات أو الشرائط الورقية، أو الشرائط المغناطيسية.

ج - وحدات تغذية ومعالجة معلومات (١٣) تضم وحدات الذاكرة، الحساب والمنطق، والتحكم المركز.

د - وحدات تمثيل نتائج (١٣) تضم وحدات التثقيب (١٣)، الطباعة (١٣)، الرسم البياني (١٣)، التلفزيون المرئي (١٣).

تتمثل هذه المكونات متضامنة، ووفق تسلسل ثابت، على النحو المبين في شكل (١٠) حيث يمثل نقل المعلومات بين وحدات الحاسب بخطوط متصلة، بينما يمثل التحكم المركزى لوحدة التحكم في بقى مكونات الحاسب، بخطوط متقطعة.

يتم التشغيل الألك للمعلومات بوساطة الحاسب، بخمس مراحل رئيسية، سابق بيرات إجمالاً، ونذكرها بالتفصيل متتابعة فيها بل:

- ٤٥ -
السجل التلقائي (3) يتم على طريقة عمل ثوابت البطاقات أو الأشرطة الورقية طبقاً للكرود المستخدم لكل بطاقة، فللكبار مثل تجهيز البطاقة إلى 80 عموداً رأسياً، و12 صفياً أفقياً، وتم تسجيل الأرقام بما قبل رقم 1، وهو يمكن تسجيل أي رقم من صفر حتى 9 في الصفوف من 9 إلى 9 (9)، أما بالنسبة للحروف الأبجدية والعلامات، فإنها تتمثل على البطاقات ببقيتين أو أكثر للتعبير عن كل حالة، ثقب في الصفوف السفلى من صفر إلى 9، وثقب آخر في الصفوف العليا أرقام (1)، (11)، (12)، وبهذه الوسيلة يمكن تمثيل 27 حرفًا (9 × 3)، وهو ما يكفي ويزيد بالنسبة لعدد الحروف العربية (36). تعرف الصفوف السفلى (9) في البطاقات في نظام التمثيل الكودي هذا، باسم صفوف ثوابت الأرقام (4)، بينما تعرف الصفوف العليا (9، 11، 12) باسم صفوف ثوابت الحروف (1).
ب - التسجيل بالمغلفة (14): يتم هذا عن طريق تسجيل المعلومات على الشريط المغلفة بنفس الأسلوب المتبعد في أجهزة التسجيل العادية، حيث يمر الشريط المغلفة أمام رأس الكتابة والقراءة (34) سريعة تراوح بين 35-40 بوصة في الثانية، ويمكن بهذه الوسيلة، تسجيل كمية هائلة من المعلومات تصل حتى 3,000 حرف معلومة في الثانية، نظراً لأن البصارة من الشريط المغلفة يمكنها أن تسع ما يعادل 800 حرف معلومة للأعداد والعلامات المميزة والخروف الأبجدية.

2- قراءة التسجيلات: يتم هذا عن طريق وسائل خاصة حساسة مزودة بها وحدات التغذية والنتائج. قد تستخدم بعض الوحدات التي تستخدم لتدخيل المعلومات للمحاسب (التغذية) أيضاً، لتمثيل النتائج الخارجة منه، حيث يمكنها القيام بالعمليتين معاً، وهي في هذه الحالة يطلق عليها وحدات التغذية / النتائج (34).

إن هذه الوحدات عندما تستخدم للتغذية، تقوم بقراءة المعلومات وتدخلها للمحاسب في شكل نصات كهروية، وهي عندما تستخدم لتمثيل النتائج تقوم باستقبال النتائج في شكل نصات كهروية، وتقوم بتحويلها إلى نص أو نص مغلفة تسجيل على الوسائط، أو تحولها إلى تقارير مطبوعة تقوم بها وحدة الطباعة السريعة الملحقة بها. إن وحدات قراءة التسجيلات، سواء عملت كوحدات تغذية، أو وحدات تمثيل نتائج، تؤدي وظيفتها من خلال الإحصاء المرخص بوجود نص أو نص مغلفة على الوسائط، هذا الإحصاء يستشر خلايا ضوئية (35) أو فرشاً معدنية كالمبينة في شكل (11)، مما ينتج عنه إقبال دائرة كهربية، وتولد نبضة تدخل إلى الحاسب فتمغلف حلقته المغلفة، ومنغلفة كلمة تتلقى هذه الوحدات النصات الكهروبية من الحاسب تعبيراً عن نتائج معينة، فتقوم بتحويلها لتيار كهربائي يؤثر على وحدات تمثيل النتائج، بالتثقيب أو المغلفة أو الطباعة السريعة على الوسائط وهكذا.

3- تخزين المعلومات: يتم هذا داخل الذاكرة المغلفة، في خلايا المعلومات وعلى الأسطوانات والأقراص والراوتر المغلفة. إن الذاكرة المغلفة يشار إليها بالذاكرة الرئيسية (36) بينما يطلق على باقي وسائل التخزين اسم الذاكرة المساعدة (37)، حيث تحتفظ كمية كبيرة من المعلومات التي قد يقضى الأمر استرجاعها لمعالجتها، كما تحتفظ بها البرامج التي يقرر تفديها.
الذاكرة المساعدة: تنقسم وحدات الذاكرة المساعدة إلى نوعين:

* وحدات الوصول المباشر: وهي الأسطوانات والأقران المغنطيسية، التي يمكن، بوساطتها الوصول مباشرة إلى المعلومات دون ماضرة لإعادة قراءة التسجيلات السابقة.

* وحدات التتابع: وهي الشرائح المغناطيسية التي تحتوي معها للوصول إلى المعلومات المطلوبة، إعادة قراءة الشريط من أوله.

إن وحدات الذاكرة المساعدة، أساس تكوينها واحد، فعناصرها جميعا تتشكل مغناطيسيا، وتشمل قراءة وكتابة التسجيلات فوقه، عدة رؤوس للقراءة والكتابة، كما يبين من شكل (١٢).

شكل (١٢) نظام قراءة وكتابة التسجيلات المغناطيسية على الوسائط
ب- الذاكرة المغنتيسية

المنشطة، التعرض لتكوينها وتنظيم عملها على الوجه الآتي:

* تكوين الذاكرة المغنتيسية: تكون الذاكرة المغنتيسية من عدة مجموعات من الحلقات المغنتيسية المنحنية الصغر، تصنع من الفريت (أكسيد الحديد) أو مادة البيروملوز ذات النفاذة المغنتيسية العالية، وهذه الحلقات تتمكّن
فوري مرور التيار الكهربائي فيها، وترتفع اتجاه مغنتها على اتجاه التيار كي يتبين من شكل (13) كي أنها لاتفقد مغنتها بتوقف سريان التيار.

(ب)...

(أ)...

(ب) عكس اتجاه عقرب الساعة
(أ) في اتجاه عقارب الساعة.

شكل (13) مغطاة الحلقات المغنتيسية

هذه الحلقات، هي التي تحتفظ بالبيانات والإدخالات، حتى يتم إرسالها لوحدة التشغيل لمعالجةها، وهي تستقبل المعلومات، في صورة نفاذات كهربائية حيث تمت في الحلقات بإحدى حالتين: الثنائية، أساس النظام الثنائي لتسجيل البيانات داخل الحاسب كي يبق أن بنا.

الحلقات المغنتيسية مرتبة داخل الحاسب في شكل مجموعات من ثمانية، حيث يجري تمثيل كل حرف أو رقم بوساطة إحدى هذه المجموعات، هذا وتم تسجيل البيانات في هذه الحلقات، عن طريق توليد نفاذات كهربائية فيها خلال سلكين متعاوني بمران خلاها. يحقق إمرار نصف التيار في كل من السلكين المتعاونين المرز بالحلقة الطولية مغنتها، مغطية هذه الحلقة دون سواها، كا هو مبين في شكل (14) ونكذا يمكن تسجيل البيانات في مجموعة من الحلقات المغطاة داخل الحاسب، دون أن يؤثر هذا على باقي الحلقات.
شكل (14) نظام حلقات المغناطيسية لذاكرة الحاسب

يتأتي استرجاع البيانات من الحلقات المغناطة، عن طريق عكس الاتجاه الذي يمر فيه التيار، بما يؤدي إلى عكس اتجاه المغناطيسة داخلها. وتوليد تيار ثانٍ. أو نبضة في سلك الإحساس (15). بما يمكن معه تبين أي من حالات الحلقات متعلقة في الحلقة، كما يتبيها من شكل (15 أ).

إعادة حالة مغناطة حلقات الذاكرة لأصلها، بعد أخذ البيانات عن طريق سلك الإحساس، يتولاها سلك رابع يسمى سلك المع (15). وتوليد نبضة في الاتجاه المضاد، بما يعيد مغناطة الحلقات إلى الحالة الأولى التي كانت عليها قبل استرجاع البيانات، كما يتبيها من شكل (15 ب).

شكل (15) استرجاع البيانات من الحلقات وإعادتها لأصلها.
وأخيراً، فإن الذكاء المغناطيسية تتنظّم العديد من مجموعات الحلقات المغناطيسية هذه على هيئة شبكات متاحة بعضها فوق بعض، تربطها مجموعة كبيرة من الأسلاك الرأسية والأفقية، بحيث يمر في كل حلقة سلك أفقي وسلك رأس يستعملان لتسجيل المعلومات داخل خلائنا الذكاء هذه، علاوة على سلك الإحساس وسلك المع، كما يتبنى من شكل (١٦).

شكل (١٦) مكونات الذكاء المغناطيسية

* نظام عمل الذكاء المغناطيسية. تمر جميع المعلومات التي تعالجها الحاسب خلال الذكاء، كما سابق أن بيئة الذكاء تتلقى المعلومات من وحدات التغذية، وتتباطأ مع وحدات التشغيل المركزية، كما توفر الذكاء أيضاً بتياليات البرامج، وهي تقوم أيضاً بإعطاء نتائج المعالجات التي تمت بوحدات التشغيل المركزية، لوحدات تكبير النتائج لإخراجها وعلى هذا فإن المذكرة المغناطيسية ذات سعة كافية، للاحتفاظ بكمية معقولة من المعلومات وعمليات البرامج اللازمة لتشغيلها.

يتم تعزيز الذكاء المغناطيسية، حيث تحتاج إلى سعة أكبر في تخزين المعلومات بذاكرة مساعدة، تتضمن وحدات تخزين معلومات، مثل الأسطوانات والأقراص المغناطيسية، هذا وتمر جميع المعلومات من الذكاء المساعدة وإليها خلال الذكاء الرئيسية.

٥١
تقسيم الذاكرة الرئيسية والمساعدة داخلياً إلى مواقع مفصولة للبيانات حسب نوعه (حرف - رقم - كلمة ... إلخ)، لكل موقع من هذه المواقع عنوانه المعروف الذي عن طريقه يتم دخول المعلومات إليه أو نقلها منه، هذا، وعند دخول المعلومات إلى أحد المواقع، فإنها تحل محل المعلومات الأصلية فيه وتلغيها، أما عند استرجاعها منه، فإن محتويات الموقع تظل بلا تغيير كما سبق أن بنا، هذا ويمكن استرجاع المعلومات من الذاكرة مرات عديدة، دون أن يؤثر هذا على قدرتها التخزينية للمعلومات.

بين وضع الذاكرة المغناطيسية بالنسبة لدورة المعلومات داخل الحاسب، الشكل (17) الذي يوضح الاتصال العرضي بين كل من الذاكرة الرئيسية والمساعدة ووحدة التشغيل المركزى، كما يبين منه أحد أنماط التقسيم الداخلي للذاكرة.

شكل (17) الاتصال العرضي بين كل من الذاكرة الرئيسية والمساعدة ووحدة التشغيل المركزى
إن الحاسب يلزم بعض الوقت، لوصول المعلومات داخل الذاكرة ولنقلها للمعالج،
وهذا الوقت يسمى الوقت الوصول (400)، وهو يضاف في الحاسب بالبيكروثانية (1 على مليون
ثانية) والثاني وثلاثة (1 على ألف مليون ثانية).
4- معالجة المعلومات: يتولى معالجة المعلومات وإجراء كافة العمليات الحسابية
والمنطقية، ووحدة التشغيل المركزية التي تتحكم في جميع وحدات الحاسب وتشرف على
عملها، وهي تنقسم من الناحية الوظيفية إلى قسمين:
(أ) قسم التحكم.
(ب) قسم الحساب والمنطق.
(أ) قسم التحكم: يتولى توجيه وتسيير العمليات اللازمة لتنفيذ تطبيقات
البرامج، وهو يتحكم في استرجاع البيانات من الذاكرة وإرسالها إليها وتوجيهها
بأية اتخاذها من الذاكرة إلى قسم الحساب والمنطق، وبالعكس، وهو يتكون
من حلقات مغنية وكاملها ترانزستور.
(ب) قسم الحساب والمنطق: يتولى القيام بالعمليات الحسابية كإضافة وطرح
والضرب والقسمة وتحرير الأعداد ونقلها ومقارنتها واتخاذ القرارات المنطقية
لتبخير تسلسل تنفيذ عمليات البرامج، وهو يتكون من دوائر كهربائية.
يمكن تبين دور وحدة التشغيل المركزية في معالجة المعلومات، إذا ما
افتراضنا قيام الحاسب بعملية حسابية كجمع مثلها، ففي هذه الحالة يقوم قسم
التحكم بتوجيه الذاكرة لإعداد قسم الحاسب والمنطق بالأعداد المطلوبة
كما يوجه قسم الحساب والمنطق للقيام بإجراء عملية الحسابية على هذه
الأعداد، وإرسال النتيجة للذاكرة، التي تتوفر إخطار وحدة تثبيت النتائج
بها.
5- جهز النتائج: يتولاه مجموعة من وحدات تسجيل النتائج، بالثقة أو المغلفة أو
الرسم البياني أو التصوير التلفزيوني أو الطباعة.
سبق الإشارة إلى وحدات تسجيل النتائج بالثقة أو المغلفة، في بعض الحدث
عن وجدات التغذية، أما وحدة الرسم البياني والتصوير التلفزيوني، فهي تستخدم
في أغراض تسجيل خاصة، ويفترض في هذا الحدث عن وحدة الطباعة.
تقوم وحدة الطباعة بإعداد النتائج في صورة بيانات مطبوعة، قد تحتوي على أرقام فقط
وتنتمي بيانات رقمية (50)، أو تحتوى على أرقام وحروف وتنتمي بيانات أبجدية
- 53 -
رقمية (56)، وهذه الوحدة تعمل بسرعة فائقة تصل حتى طباعة 1000 سطر/ دقيقة
بالنسبة للبيانات الأبجدية الرقمية، 1500 سطر/ دقيقة بالنسبة للبيانات الرقمية.

وأخيرا فإن جميع العمليات التي يقوم بها الحاسب تم في فترات زمنية محددة، تقاس
بوسطة نبضات ساعة الكترونية مزود بها الحاسب، تقدر بمعدل خمسة ملايين نبضة في
الثانية، هذا ويقاس زمن إنجاز كل عملية بعدد عدد من هذه النبضات.

يتتابع فيها إلى صور أحدث وحدات تمثل النتائج المتصلة بالحاسب، بالتصوير
التلفزيوني، أو بالرسم البياني، أو بالطباعة، أو بالتسجيل على الأشرطة الورقية، أو
أشرطة الكاسيت.
نتائج المعالجة الإلكترونية للمعلومات، كما تظهرها الشاشة التلفزيونية
لأحد الجوانب الحديثة
وحدة عرض النتائج بيانياً على شاشة تلفزيونية
وحدة تسجيل النتائج على الأشرطة الورقية
وحدة تسجيل النتائج على أشرطة الكاسيتات
ثانياً: برامج التشغيل

"Software"

برنامج التشغيل (\(7 \)) هو سلسلة من الإجراءات تتضمن تعليمات (58) يقوم بتنفيذها الحاسب واحدة تلو الأخرى، ويرمز لكل منها بآلة رقمية معين ضمن تعليمات البرنامج.

لتوضيح هذا التعريف، نفترض قيام الحاسب بإجراء العملية الحسابية:

\[(A + B) (C - D) \], إن هذا يعني قيام الحاسب بإجراء عمليات حسابية ثلاثية:

جمع وطرح وضرب، وتسجيل نتائج كل عملية ثم تسجيل النتيجة النهائية للعملية الحسابية ككل.

إن قيام الحاسب بإجراء هذه العملية، يقتضي وضع برنامج عمل مسبق له، يتضمن الخطوات التي ستعدها للوصول للحل، وتحديد الكود الرقمي المميز لكل خطوة من هذه الخطوات لتسهيل التعامل مع الحاسب، ثم تحديد خلايا الذاكرة التي ستخصص لاستيعاب مختلف العناصر التي تتضمنها خطوات الحل، كما هو موضح في جدول (2).

جدول (2) برنامج حاسب رباعى التعليمات

<table>
<thead>
<tr>
<th>الكود</th>
<th>العملية</th>
<th>خلايا الذاكرة المخصصة لاستيعاب عنصر خطوات الحل</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>جمع</td>
<td>(أ) (A + B)</td>
</tr>
<tr>
<td>37</td>
<td>طرح</td>
<td>(ب) 33 (C - D)</td>
</tr>
<tr>
<td>40</td>
<td>ضرب</td>
<td>(د) 40 (D)</td>
</tr>
<tr>
<td>33</td>
<td>تسجيل</td>
<td>(ج) 33 (C - D)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>(أ + B) (C - D)</td>
</tr>
</tbody>
</table>
إن عمل الحاسب، قد تحدد طبقاً لما جاء بالجدول في صورة برنامج رمزي:

التعليمات، على النحو التالي:

1 - عملية جمع رمز بالكود الرقمي (101)، وتُحدد تسجيل عناصرها خلائياً الذاكرة (24، 29) وتتيجِتها الحالية (31).

2 - عملية طرح رمز بالكود الرقمي (102)، وتُحدد تسجيل عناصرها خلائياً الذاكرة (32، 40) ولتيجِتها الحالية (33).

3 - عملية ضرب رمز بالكود الرقمي (130)، مسجِلة عناصرها في خلائيا الذاكرة (31، 33) وتُحدَّد لتيجِتها الحالية (50).

4 - عملية تسجيل رمز بالكود الرقمي (107)، لتسجيل نتيجة العملية الحسابية ككل في خلائيا الذاكرة (50).

من هذا المثال، توضح القواعد العامة لوضع برنامج تشغيل الحاسب، وهي تتعلق فيها إلى:

1 - تجزأ أي عملية بعد تحليلها، لعدد من الإجراءات المتتابعة المميزة في صورة عمليات يفهمها الحاسب.

2 - تستخدم الرموز أو الأعداد، لتمييز خطوات إجراء العملية أو التعليمات.

3 - تتضمن تعليمات البرنامج، أجزاء خاصة بتعرف المعلومات المراد معالجتها، والعمليات المطلوبة إجراؤها على هذه المعلومات.

4 - تتضمن تعليمات البرنامج، على أجزاء خاصة بعمليات التغذية والمعالجة وخروج النتائج، هذا وتم حجز أماكن في خلائيا الذاكرة، تدخل إليها المعلومات قبل معالجتها، وتستعمل فيها النتائج بعد المعالجة وقبل تمييزها على وسائط الخروج.

5 - قد يشمل البرنامج على تعليمات قاطعة للمتابعة (49) تستخدم في حالة الرغبة في إيقاف سير عمليات البرنامج بغض النظر.

إن تجهيز المعلومات، في صورة برنامج محجوز يقود به الحاسب على نحو ماتين، يحقق إمكانيات التكرار الدوري لأجزاء منفصلة، فيها يسمى بدوران التعليمات (39) هذا وقد جرى العنف على صياغة برامج الحواسيب، في شكل مزج مُحددة لغات خاصة بصياغة المعلومات التي تعالجها البرامج، تسمى بلغات وضع البرامج، وثروات سيطرة توضح تتابع العمليات التي تتضمنها البرنامج.
لغات وضع البرامج: تعتبر لغات وضع البرامج جزء أساسي في نظام معالجة المعلومات. لقد بدأت صياغة برامج الحواسيب في الأربعينات من هذا القرن، بلغة يفهمها الحاسب (19)، عبارة عن مجموعات من الأعداد تغذى للحاكنة، وتتولى بمقتضىها معالجة المعلومات. جرت بعد ذلك محاولات لوضع قواعد لغات مختلفة للحاسب، تعرف باسم اللغات المرتفعة (20). تصلح لوضع برامج في مختلف التطبيقات، تذكر منها على سبيل المثال ثلاث لغات تعتبر أكثر شيوعًا، هي:

(أ) لغة الفورتран (21) وهي لغة ترجمة المعادلات الرياضية إلى لغة الحاسب، باسمها مشتق من هذا العمل.
(ب) لغة الكوكول (15) وهي لغة ابتعدت عن خدمة أغراض الصناعة والتجارة، باسمها مشتق من الواجب الذي تؤديه.
(ج) لغة البرنامح (22) وقد أصبحت أهم لغات وضع البرامج، نظرا لصعوبة استخدامها في مختلف تطبيقات العلوم والفنون، وهذه اللغة يستخدمها معظم العلماء والرياضيين والمحلدين وواضحى البرامج.

خريطة سير البرنامح (15): خريطة سير البرنامح، عبارة عن مجموعة مسلسلة من الأشكال البرمجية التي تمثل عمليات متعلقة، تبدأ بالتغذية ثم المعالجة وتنتهي بالنهاية. إن أهم الرموز المستخدمة في خرائط السير، ومعنى كل منها، يمثلها شكل (18) كا يمثل الشكل نمذجًا خريطة سير برنامج طبقًا للغة البرنامح رقم 1.
شكل 18: رموز خرائط سير النظام والبرامج
التحكم الآلي ونظم المعلومات

Automation Systems

"Robot" الروبوت
"تجسيد الذكاء الصناعي في معالجة المعلومات للتحكم الآلي"
التحكم الآلي ونظم المعلومات

التحكم الآلي هو التطبيق العملي للنظرية العامة للتحكم الآلي التي سياها نوربيرت وينر (1894 - 1964) بالسيرنيت (17) والتي ظهرت نتيجة دراسة الشبكة بين عمليات التحكم في الأنظمة البيولوجية والتكنولوجية، هذا وكلمة سيرنيت مثبتة من الكلمة اليونانية كبرينجتس وتعني «دفة الربان».

مكّن التقدم في العلوم الإلكترونية، وظهور الحواسيب الآلية المبتكرة، من انتشار نظام التحكم الآلي، الذي تتدى على وحدات إدخال وإخراج بيانات، ووحدات تشغيل وذاكرة، تعتمد بحفظ وتحويل المعلومات المستقبلة والمرسلة.

انتشر استخدام نظام التحكم الآلي في السنوات العشر الأخيرة، وحقق هذا إنجازات ضخمة في مجالات التحكم في الإنتاج الصناعي، وحركة النقل، وقيادة السفن والطائرات، ومركبات الفضاء، وإطلاق المدافع والصواريخ، وإعداد طبيار القنابل، ورواد الفضاء، هذا والأساس في مجالات التحكم هذه هو تطبيق القواعد العامة للتحكم الآلي المبرمج، التي تتيح دقة التحكم والتفاعل الحساس المتبادل بين نظام التحكم الآلي والوحدات المراقبة، بما يحقق انتظام عملها وارتفاع إنتاجيتها، بشكل يفوق سيطرة الإنسان عليها.

تحل نظام التحكم الآلي «روبوت» محل الإنسان في مراقبة العمليات الآلية المختلفة، وتفضله بحساسيتها المرهفة، وهي ترجع عن كاهله مشقة المراقبة الآلية المستمرة التي تعني بالإهال.

يتتأثر تفهم دور التحكم الآلي في مراقبة العمليات وبضعة حركتها، بعقد مقارنة بين دائرتي التجميع في التحكم الآلي، وفي التحكم العصبي في الكائن الحي، كما يظهرها شكل (19)، الذي يوضح الشبكة الكبير بين نظام التحكم في الآلة، وفي الكائن الحي.

٦٥٦
و تميز دائرة التحكم المثبتة في شكل (19) بوجود دائرة مغلقة لنقل المعلومات من الضابط للجسم بواسطة وصلة التحكم في صورة إشارات، ومن الجسم للضابط عن طريق قناة الواصل العكسية في صورة معلومات عن الجسم المضبط.

يتأتي تحكم الضابط في الجسم المضبط بناءً على ما يصدر إليه من تعليقات في ضوء ما يرد لأول من معلومات عن التالي.

يحل الضابط في نظم التحكم الآل، محل العقل البشرى في اتخاذ القرارات المنطقية التي تناسب والتأثير على الآلة في شكل معين يتفق والمعلومات الواردة إليه، هذا تقوم الحواسيب الآلية في نظم التحكم الآلي، مقام الضابط، ودورها في هذا يمثل دور الجهاز العصبي في الإنسان.

تنتمي أجهزة التحكم الآل أربع مجموعات من النظم بيانها كالآتي:

1- نظم الرقابة الآلية: تشمل على وحدات قياس آلي وميقات مراجعة سير العمليات الصناعية.
2 - نظم الحياة الآلية: تشتمل على وحدات لمنع حيود معدلات سير العمليات عن القيم المسموح بها، مما قد يسبب عنه عطل أو خسارة.

3 - نظم التحكم الآلي: تشتمل على وحدات لتغيير الإتجاه أو فتح الدوائر وقفلها، بما يصير مع التحكم في آلية التشغيل.

4 - نظم الضبط الآلي: تشتمل على وحدات تحقق الاحتفاظ دائمًا بمعالجات ثابتة لسير العمليات طبقاً لبرنامج محدد، وهي أكثر نظم التحكم الآلي شيوعًا.

إن نظم التحكم الآلي هذه، على اختلاف أنواعها، يمكنها أن تحل محل الإنسان للتحكم في أعقاد العمليات الصناعية.

يقوم الحاسب الآلي في هذه النظم، بدور الضبط خير قيام، وهو يؤدي دوره في التحكم من خلال تعليمات البرامج المزود بها، كما هو مبين في الشكلين رقم 20، 21.

تتمثل دائرةنا التجميع الموضوعتان ببدو الشكلين، نظامًا للضبط الآلي المبرمج الذي يكون من الإنتاج فيه لتأثير المتغيرات. إن المعلومات عن هذه المتغيرات تدخل الحاسب حيث تنتج طبقاً لتعليمات البرامج. بعد توافر الآلة بتعليمات تشغيل جديدة مطابقة للتعليمات المحددة بالبرنامج، تتعدل نظم التشغيل هذه آليًا، تبعًا لتثبيت المتغيرات، وهي تسير دوامًا، طبقًا لمعدل ثابت، تجدده برامج التحكم الآلي المزودة بها هذه النظم.

- انضباط حيطون الإنتاج وارتفاع كفاءتها، نتيجة برامج التحكم الآلي المزودة بها - 67 -
شكل (19) دائرتا التحكم الآلي (أ) والتحكم العصبي (ب)

شكل (20) الضبط الآلي المبرمج لعملية تختيم لمؤثرات متراقبة
مراحل عمليات صناعية

شذل (21) الضبط الآلي المبرمج لعملية تCompound الؤثرات مباعدة
استغلال نظام المعلومات

"Information Systems Applications"
استغلال نظم المعلومات

تعد في السنوات الأخيرة استخدام نظم المعلومات على نطاق واسع في مجالات الحياة المختلفة.

إن استغلال هذه النظم في التشغيل الآلي للمعلومات والتحكم الآلي البرمجي للأجهزة والمعدات الآلية: عن طريق تسخير الحواسيب، أدوات وضوابط هذه النظم، قد مكن إلى حد كبير من تطوير الأعمال والأنشطة المختلفة في القطاعين المدني والعسكري على النحو المبين في الورش التالية.

أولا: مجالات استغلال الحواسيب في القطاع المدني

تعتبر الحواسيب دعامة أساسية لإعداد وتحليل كل عمل ناجح، لهذا فقد عم استخدامها في كل مجالات الحياة المدنية تقريباً على الوجه الآتي:

(أ) مجال التعبئة العامة والإحصاء: يرجع للحواسيب الفضل في حصر بيانات مختلفة الإمكانيات والموارد المتاحة للدولة، التي يستند إليها التخطيط الناجح لبرامج التنمية.

(ب) مجال الاقتصاد: تستند أعمال البنوك والمسارف وشركات التأمين أساساً على القدرات المتميزة للحواسيب، في ضبط حسابات العملاء وحركة الأرصدة.

(ج) مجال الصناعة: تؤدي الحواسيب، تحليل العناصر الأساسية لإنتاج الصناعي، من قوى بشرية، وقوى مؤسسة، وخدمات، وعمليات صناعية، بهدف توفير ضيادات الإنتاج الصناعي السريع والجديد.

(د) مجال الزراعة: تقوم الحواسيب عن طريق البرامج المسيرة الإعداد، بتنوير البيانات الصحيحة، عن التقاويم، والأسماك، والمبيدات المشرقة، المطلوبة لزراعة المحاصيل المختلفة، وهي من خلال ذلك، وبالاستعانة ببيانات غير الطقس المتوقعة وقت الزراعة، تستطيع التنبؤ مستقبلاً بنتائج المحاصيل، وهي في قطاع
التصنيع الزراعي، تستطيع القيام بضبط عمليات التصنيع الاقتصادي للمنتجات الزراعية، وطريقة تسويقها، باحترام عائدًا اقتصاديًا جزئياً.

(ه) مجال التشبيه والمشاريع الإنشائية: تقوم الحواسيب بالدور الرئيسي والهام في تنفيذ وضبط برامج التشبيه والبناء، حيث تستمر أموال طائلة في إنشاء وحدات ومجمعات سكنية جديدة ومصانع ومدارس وطرق وخيل ورافد وندرود ... إلخ.

إلى غير ذلك ما تضمنت برامج التنمية.

(و) مجال البحث العلمي: تقوم الحواسيب بداء العمليات الرياضية الطويلة والصعبة التي تتضمنها البحوث، بمتى الدقة في أسرع وقت، كما يسنده إليها أداء العمليات الحاسوبية والمنطقية التي يشتمل عليها برنامج أي بحوث، وهي تقوم بتعريف تأثير مختلف العوامل على مجريات البحوث، كما تؤدي تحليل البيانات التي تمتلك عنها.

إن مجالات استغلال الحواسيب في مختلف نواحي النشاط في الحياة المدنية، متعددة متنوعة، وهي تنزويج يوما بعد يوم، تبعا لما تفرضه زيادة الأنشطة في هذه المجالات كما وكيفاً.

ثانياً: مجالات استغلال الحواسيب في القطاع العسكري.

تعتمد القوات المسلحة على القدرات الضخمة والمتنوعة للحواسيب، في حصر وتبويل مختلف الإمكانيات والموارد المتاحة لها، بما يضمن وضع تخطيط سليم، يكفل الإقادة الكاملة منها. إن التفوق الذي ترجمه الجيوش في عصرنا هذا، يرجع الفضل الأكبر فيه، للحواسيب ومقدراتها الفائقة على حل مشكلات التنظيم، وإعداد خطط التسليح، والتدريب، وإحكام السيطرة، واستخدام القوات المسلحة للحواسيب في هذه المجالات، لا يعد مكلفاً، إذا ما قيس بما يحققه من دقة في إعداد البرامج، وسرعة في التوصل للقرارات.

إن عديدًا من الدول، في الشرق والغرب، قد دعمت الإمكانيات قواتها المسلحة بالحواسيب، حيث تشير التقارير، إلى أن حوالي 45% من إنتاج الحواسيب في الولايات
الحدود مثلًا، يذهب للقوات المسلحة الأمريكية، حتى أصبح معدل تعميم الحواسيب في الجيش الأمريكي الآن، حسابًا واحدًا، لكل 800-900 جنيه.

عممت جيوش دول حلف الأطلسي وإسرائيل، استخدام الحواسيب، وتعميم استخدام الحواسيب في الجيش الإسرائيلي، هو صورة أخرى من صور الدعم العسكري الأمريكي لإسرائيل، الأمر الذي يستتبعه، ضرورة تكثيف اعتاد الجيوش العربية على الحواسيب، لتحقيق التقدم في مجالات النشاط العسكري المتطور.

ترى الحواسيب هذا التقدم في المجالات الأساسية الآتية:

» الإحصاء العسكري والبحوث الإحصائية: تقوم الحواسيب بحصر وتزويد البيانات المختلفة التي يحتويها النشاط العسكري المتعدد للقوات المسلحة، والتابعة:

1 - الكفاءة القتالية للموارات.
2 - الكفاءة الفنية للأسلحة والمعدات والأجهزة.
3 - التخزين والتشوين.
4 - النقل والإمداد.
5 - التمييز والسيرة.
6 - الإخفاء والتدمير والانتشار.
7 - الوقاية من أسلحة التدمير الشامل.
8 - المخابرات والاستطلاع.
9 - الحالة الصحية والنفسية.
10 - المناوئات وأعمال القتال.
11 - التدريب والتأهيل.
12 - التجنيد والتعبئة.
13 - القيادة والانضباط العسكري.
14 - الحرب النفسية.
15 - الخسائر وتحليل الحوادث.
16 - الظروف السائدة في ميدان القتال بالنسبة لطبيعة الأرض والجو.

» كما تقوم الحواسيب بحصر وتزويد المعلومات التي يهم القوات معرفتها عن العدو، مثل:

1 - تمرير وتوزيع القوات.
2 - تمرير وتوزيع شبكات الإنذار والدفاع الجوي.
3 - شبكات المواصلات وأتربيب المياه والوقود.
4 - الأهداف الحيوية في العميق.
5 - القواعد الجوية ومناطق الشؤون الإدارية.
6 - الكفاءة الفنية للمعدات والأسلحة.
7 - الكفاءة القتالية للقوات.
8 - التأهيل المهني والقائي.
9 - التأهيل المهني والقتالي.
10 - التحديات الاقتصادية.
11 - الأوضاع الاقتصادية.
12 - الأوضاع الاجتماعية.
13 - الحالة الصحية والنفسية.
14 - الأوضاع الاجتماعية.

وفي مجال إعداد الدولة للحرب، تقوم الحواسيب ببحصر الإمكانات في مجالات:

1 - الدفاع الشعبي وال/-- وحماية المرافق والأهداف.
2 - التطور والتدريب العسكري.
3 - الإعداد النفسي والمعنوي للحرب.
4 - الإنتاج الصناعي والحربي.
5 - الإنتاج الزراعي.
6 - المؤسسة الاقتصادية واحتياطي الأرخص.
7 - المخزون السلمي والخانات.
8 - الإنتاج العام وحصر الكفاءات.
9 - النقل والمواصلات.

إلى غير هذا من الإمكانات التي تفيد في تأمين الجهود الداخلية ودعم الجهود الحربية.

لكسب المعركة.

(ب) الصناعات الحربية: تؤدي الحواسيب خدمات جليلة بالنسبة لتحديد مختلف العناصر التي يعتمد عليها الإنتاج المتعدد والدقيق لهذه الصناعات، من حيث حساب الخانات، وتحديد التشغيل الأثاث لها والهاياكنتات، وإعداد مرجع جديد يتوفر فيه كل ضمانات الكفاءة التي يتطلبها الاستخدام العسكري الشاق. إلى جانب هذا تقوم الحواسيب، وطبقا لبرامج خاصة، بحل المشكلات المعقدة التي قد تواجه هذه الصناعة، كما أن أفضل الأطراف يقدم إليها في قيام عمليات الإنتاج الصناعي المربح، المبني على التحكم والضبط والحماية والرقابة الآلية على نحو ما سلف ذكره.

(ج) التشديد العسكري: تتضح ضخامة العبء الذي يقع على كاهل المهندسين العسكريين، من ضخامة عمليات تخطيط وتنفيذ مشاريع التشديد العسكري للاستحکامات الدفاعية، والدعم الحرسية، والملاجئ، وتجهيزات القواعد الجوية، والدفاع الجوي، وشبكات الطرق ... إلخ.

- 76 -
لا يخفف من ثقل هذا العمل ، سوى استخدام الحواسيب ، كأداة فعالة في عمليات التصميم ، وإعداد الحسابات المختلفة الخاصة بأعمال تنفيذ الإنشاءات - "CAD/CAM" "Computer AID Design/ Computer Aid Manufacture"

تكتن الإمكانات الحقيقية للحواسيب في عمليات تنفيذ الإنشاءات في الآتي:

1 - قدرتها على تسجيل كمية هائلة من المعلومات في ذاكرتها الاستيعابية.
2 - قدرتها على إنجاز الحسابات ، وحل المسائل المعقدة في وقت وجيز.
3 - كفاءتها في إصدار وتوزيع المعلومات ، طبقاً لما هو معروف بالخاطبة الإلكترونية.

تتضمن البرامج الإلكترونية لعمليات التشخيص ، التكامل بين نظم المعلومات والتصميم والالتزامات الإنشائية الخاصة بالتنفيذ بما في ذلك تكرار السير في محاولات فاشلة غير متمرة ، كما أنها تسهم بقدر كبير في إرساء قاعدة ، يمكن أن تبنى عليها مشروع التطبيق المستقبلية في هذا المجال ، بما يوفر جهد معاودة التكرار الملف.

تتضمن البرامج الإلكترونية التشخيص دورتين :

الأول للتصميم والثانية للتنفيذ. تبدأ دورة التصميم (اف) بالفكرة المعمارية ، وتنتهي بمدى إمكانية التنفيذ في حدود الميزانية المحددة ، أما دورة التنفيذ (اف) فتشمل جهيز عناصر المساقط والرسومات والمراقبات التكتيكية وإعداد جدول مراحل التنفيذ ، كما هو موضح في شكل (27) الذي يمثل دورة مراحل التصميم والتنفيذ لاستخدام الحاسب في معالجة المعلومات الخاصة بعناصر العمل المرتبطة (اف) في عمليات التشخيص.

(1) إدارة المعركة القتالية (اف) : تقوم الحواسيب الميدانية بدور رئيس في تحمل المعلومات عن العدو ، وعن القوات ، وأثر المعركة ، بما يكلل وضع القرارات السليمة الخاصة بإدارة المعركة القتالية.

يسبق العمليات القتالية ، مرحلة وضع القرار المبني على تقدير سليم ، لموقف قوات الجانبين المتحاربين ، وتقدير الموقف هذا يشمل إجابة على عناصر المعلومات الآتية:

1 - تركز وتوزيع قوات الجانبين المقاتلين.
2 - الكفاءة القتالية ودرجة الاستعداد القتالية لقوات الجانبين.
3 - الكفاءة الفنية والإدارة لوحدات كل منها.
شكل (22) دورة مراحل التصميم والتنفيذ لاستخدام النظام الإلكتروني للحاسب في معالجة المعلومات الخاصة بعناصر العمل المرتبطة في عمليات التشديد

1 - الأهداف الحيوية لكل جانب، وكيفية مهاجمتها والدفاع عنها.
2 - طبيعة أرض المعركة على كل جانب، والظروف الجوية السائدة.
3 - احتياجات الدعم لكل جانب.
4 - خطوط الإمداد وشبكات المواصلات.

تشتمل نظم المعلومات الميدانية، على حواسب ميدانية ذات سرعات تصل حتى 1000 عملية ثانية، وهي جزءة بوسائل استقبال وإرسال معلومات على بعد خفية ولاحصية.

(هـ) التجهيزات الحربية (١٦): تقوم الحواسيب بدور طبيعي وهام، في تجهيز نظم معلومات القتال المتقدمة في الدفاع الجوي ورصد التحركات على الوجه الآتي:

1 - نظم الدفاع الجوي: تحمي الحواسيب لهذه النظم، متصلة برادارات توجيه المدافع والصواريخ المضادة للطائرات. يحدد الحاسب بدققة متانة، بناء على المعلومات التي يستقبلها من الرادار المكتشف للطائرة المهاجمة، اتجاه وسرعة هذه الطائرة، ويقوم
تنتظم شبكات الدفاع الجوي الاستراتيجي، مجموعات من هذه النظم، ذات نطاقات عمل متراكبة، تتولى تغطية المجال الجوي بأكمله، واكتشاف وتدمير أي اشراقة جوي معاد. يعد نظام الدفاع الجوي المتكامل المعروف باسم سال (SAL)، أشهر هذه النظم، وهو ينتمي مجموعة من الرادارات والحواسب وأجهزة التحكم الآلية التي تتولى اكتشاف الأهداف، وتوجيه المقاتلات والصواريخ لمهاجمتها. (شكل 24).
شكل (42) نظام وساح، للفداع الجوبي لحماية المقاتلات والصواريخ.
يعجز العقل البشري وحده عن إدارة المعركة الحديثة
والنهوض بكل تبعاتها بغير الاستعانة بالحواسيب
الميدانية

• التوجه الآلي لإصابة الأهداف من خلال نظام SAGE - للدفاع الجوي
2 - نظم الرصد الإلكتروني للحركات: تعمل الحواسيب في هذه النظم متصلة بأجهزة خاصة للكشف عن الحركات القولت على الطرق. ففي أحد هذه النظم، وهو نظام اجلو هوايتس (1) يتم رصد الحركات على الطرق بوساطة كشف خاصة. كأجهزة كشف الهزات الأرضية أو كشف الأصوات أو الكشف المنطيسي، وتقوم هذه الأجهزة بإرسال إشارات لاسلكية تفيد هذا الكشف لمركز المعلومات، الذي يتولى تكييف هذه الإشارات وتزويدها للحواسيب بها. وهي بدورها تقوم بتحديد أماكن الأهداف للمقاتلات لمواجهة، هذا في الحالات التي تكون فيها المقاتلات مزودة بحزمة للتحكم الآلي. يكون استقبال معلومات الأهداف من الحواسيب والتعامل المباشر (2) آلياً مع الأهداف.

إن تزويد المقاتلات بالحواسيب الآلية وأجهزة التحكم الآلي يرفع من كفاءتها القتالية إلى حد مذهل. حيث تكفل هذه النظم للمقاتلات، سيطرة آلية على كل عملياتها القتالية، من ملاحة وتوجيه وتحديد أهداف وتحديد طرق الاقتراب من هذه الأهداف بعيداً عن نظم الدفاع الجوي الاعتقالي، ثم هي في النهاية تمكنها من التحكم الآلي الدقيق في قصف الأهداف، بالمدفع أو الصواريخ، والتمكن من الهروب الأمن في رحلة العودة.

(و) التدريب والرقابة الفنية (3):

1. تقوم الحواسيب بدور هام في ضمان نجاح أطمбедيات الطائرات ورواد الفضاء لواجعهم في قيادة المعدات، وهذا يتطلب عن طريق وضع برامج تدريب لهما، تزود بها الحواسيب، ويلزمهم اجتيازها للتحكم على لياقتهم الفنية في التعامل مع معداتهم.

2. لا تختلف برامج التدريب التي تزود بها الحواسيب، لنتبين مدى نجود الأدمين لواجعهم كثيراً عن برامج الرقابة الفنية للتحكم على سلامة المعدات قبل تشغيلها، فالطائرات قبل إقلاعها، والصواريخ الموجودة ومرتكبات القضاء قبل إطلاقها، يتم التأكد من سلامة عمل أجهزتها من طريق إخضاعها لبرامج رقابة فنية تزود بها الحواسيب.

٨٢
بحث الأسلحة والمعدات:

تقوم الحواسيب بالعمليات الحسابية والمنطقية المعقدة الخاصة بتصميم الأسلحة والمعدات، في إطار الخصائص الفنية المطلوبة توفرها في السلاح أو المعدة.

لاهتم عن الحواسيب في جميع المرافق التي ترى بها بحوث تصميم الأسلحة والمعدات، منذ أن بدأ فكر، حتى تنتهي بتصميم متكامل قابل للتنفيذ، وهي فوق هذا، تقوم بالمساعدة في تجهيز جداول ضرب النار، والخصائص البالستية الأخرى الخاصة بالأسلحة قبل استخدامها. تستخدم الحواسيب أيضاً، حساب الآثار التدميرية لأسلحة الدمار الجزئي والشامل على نحو قاطع، يفيد في تخطيط الأسلوب المناسب للتعامل معها.

تؤدي الحواسيب دورها في خدمة بحوث تصميم وتطوير نظم الأسلحة والمعدات، من خلال نظام رقمي خاص ووضع لتبسيب هذه النظام، بيهم عمل الحواسيب في تداول المعلومات الخاصة بها ومعالجتها. يتضمن هذا النظام، ثلاث مجموعات لنظم الأسلحة والمعدات (ن) بينها كالألي:

1- مجموعة نظام الأسلحة المتكاملة: تضم نظام الصواريخ المرجحة والدفاع الجو.
2- مجموعة نظام الأسلحة المتكاملة: تضم نظام المرفقات المرجحة.
3- مجموعة نظام الأسلحة المتكاملة: تضم نظام الحركات، بحرية، وحرية.
4- مجموعة نظام الأسلحة المتكاملة: تضم نظام المركبة، كالمدات الكهربائية واللاكتروباثية والبيكانيكا، والتصنيع المصل، كما تضم نظام المعدات غير التكميلية، كالقنابل، والآلات، ومعدات التسليح غير المتصل.
5- إن خصائص كل مجموعة من هذه المجموعات، يحدد هذا النظام الرقمي، وفق تنظيم عددي ينتظم لمحور نظام ثلاثية، يضم كل مشروع منها، عدد من عناصر الخصائص، التي تحدد طبيعة وجال استخدام السلاح أو المعدة، على الوجه المبين في شكل (30).

وهكذا فإن نظام التبسيب الخاص، هذا يكشف عن كل معدة في صورة عدود ذي ثلاثة أرقام، أي منها يحدد مجموعة نظام السلاح أو المعدة، والأوسط يحدد طبيعة الاستخدام، بينما يحدد الرقم الأيسر مجال الاستخدام.
1 - مجموعة نظم الأسلحة المتكاملة. 2 - مجموعة نظم المركبات.

úmero نظم الأسلحة الكاملة.

3 - مجموعة نظم المعدات.
(أ) المعدات التكميلية. (ب) المعدات غير التكميلية.

العناصر:
1 - أرض. 2 - بحر. 3 - جو. 4 - تحت الماء. 5 - الرادار
6 - ميظنتها. 7 - الحواسب وميظنتها. 8 - شاشات التتبع. 9 - التوجيه،
الضبط الآلي. 9 - ميظنتها.

شكل 70 نظام تبريد المعلومات الخاصة بالأسلحة والمعدات.
لقد سهل النظام الرقمي هذا، وبدرجة كبيرة، تبويغ المعلومات الخاصة بالأسلحة والمعدات، وهو قد ساعد الحواسيب في معالجة بيانات البرامج الخاصة بتطويرها، الأمر الذي عجل بدفع البحوث الخاصة بها شوشا كبيرا إلى الأمام، وحقق لها ثبات ومقدرة على التصدي لاحتياجات التطور، بين تأتي، لولا اعتقاد البحوث على نظام الحواسيب والمعلومات، على نحو ما يتبين من شكل (26).

(6) بحوث العمليات (48):

تستخدم الحواسيب لإدارة المباريات الحربية (48) الخاصة لتبين الأتي:

1- مدى فهم إدارة المعركة الحربية.
2- اختبار قابلية الأفكار التكتيكية والتنظيمية الجديدة للتطبيق قبل الاستخدام.

بحث العمليات هو في التحليل الدقيق والمنطقي للعناصر المختلفة التي توفر على سير المعركة، ومن هنا برز دور الحواسيب في إدارة المباريات الحربية، بما تمتاز به من قدرة على التحليل الحسابي والمنطقي للمواقف، وهذا الدور تأتي، من قدرة الحواسيب على معالجة نتائج الحل المقترحة، وتعريفها لعمليات تمثل متكررة، بهدف تبين تأثير العوامل المختلفة، على قدرة النتائج لتحقيق الحلول، كما يتبين من شكل (27).
شكلاً (٧٦) ترابط البحوث ونظام المعلومات
1- تدريب القيادات على إدارة المعركة: إن تدريب القيادات على إدارة المعركة يتبنا
أسلوب المباريات الحربية الخاصة، يتيح التعرف على تدريجهم في تفهم مختلف
المواقف التي تفرضها ظروف المعركة الحقيقية، كما يتيح التعرف على أساليبهم في
مواجهةها ومقدراتهم على التصرف إزاءها، ففي بحوث المباريات الحربية الخاصة،
يتم تزويد الحساب بمعلومات عن القوى المتحاربين، تشمل بيانات حقيقية
وفرضيات عن حجم الإمكانيات المتاحة لكل، وطبيعة مسرح العمليات، ونظم
الإمداد والإخلاء المتوقفة لدى كل جانب... إلخ، ويقوم ضباط الأركان بالتركيز
في غرفتين منفصلتين، مزودتين بالأدوات اللتين عليها الأوضاع الحقيقية للقوات.
حيث يتولى الحاسب تلقى البيانات عن قرارات القادة، تبعاً لتقديرهم للمواقف
السابق تعديها بعمرية مجموعة بحوث العمليات (6) ومتوازي قرارات القادة، وفي
النهاية يحدد الحاسب الجانب المنتصر في المباريات الحربية، كما يتم تحليل المواقف
والقرارات للخروج بالدروس المستفادة.

2 - تحليل الأفكار والنظم: لقد استحدثت بحوث العمليات بالجيش الأمريكي جهازا
لمثير المباراة الحربية، أطلق عليه اسم سنتاك (5)، لتحليل الفهامج والأفكار
التكتيكية والتنظيمية ونظم التسليح الحربية بالجيوش الميدانية، يعمل بوساطة
الخواسب الآلية، ويادر بوساطة مجموعة الإدارة والسيطرة تنبعث من ممثلين
للمخابرات والاستطلاع وعمليات الجوية والدفاعية والمدفعية والتحركات والإمداد،... الخ،
هم القادرة على تحديد الأهداف التكتيكية وتحليل الأفعال العسكرية، كل في تخصصه.

الكمبيوتر أساسي في المباراة الحربية وبحوث العمليات

- 88 -
تبدأ هذه المباريات، بإعطاء الفرق المشتركة، وهي فريق أزرق يمثل القوات الصديقة وفريق أحمر يمثل القوات المعادية. كمية من المعلومات، تساوي فقط ما يمكن أن يتضمن في جمعة حقيقية، عن حزم القوات المعادية، وسرد العمليات، وأهداف المباراة الحربية، يفصل بين الفريقين في مكانين متقاربين خلال سير المباراة، وينفذ الفرد التناغم، من المباراة على فترات محددة تتضمن مراحل تقييم، وتفاوض مجموعة الإدارة والسيطرة بعد كل مرحلة، بالنواتج التي تقيم، ثم يعدمل موقف القوات تبعاً للخسائر التي حدثت لكل فريق في الأفراد والمعدات في المرحلة السابقة، وتبدأ بعد ذلك دوره جديداً، وهكذا تتبع دورات التلاجم في المباراة الحربية، طبقاً لما هو محدد بالسيناريو كما يوضحه شكل (28).

(1) غزو الفضاء:
تقوم الحواسيب بدور طالع في تحليل المعلومات، واستخلاص النتائج الخاصة بغوتو الفضاء، كما تساعد في بحوث تصميم الأجهزة والمعدات التي تستخدم في الرحلات الفضائية. إن أجهزة التحكم الآلي، المزودة بها سفن الفضاء، توفر مراقب وضبط مسار هذه السفن، وعلى مدار الرحلات من وإلى الأرض، كما توفر أجهزة الحياة الآلية ضمانات السلامة لرواد الفضاء داخل وخارج السفن، علاوة على ما تقدم، فإن نظام معالجة المعلومات، بعد، التي توفرها الحواسيب، تحقق سرعة تداول المعلومات من وإلى المركبات الفضائية، بما يتيح إدخال التعديلات على برامج الرحلات عن طريق نظام التحكم الآلي المزودة بها المركبات.

89
شكل (8) دورة تقييم المبارزة الحربية (ستاكر)
أوأخيراً، فإن التدريب المبهمج، الذي يتبعه الحواسيب لرواد الفضاء، يضمن
تفهمهم الكامل لمهمتهم بعيداً عن الأرض، وهو يحقق لهم الاعتماد على النفس.
في التحكم في سفن الفضاء، عند حدوث أي عطب يلحق بنظم التحكم الآلي
المزودة بها.

مركز جود / تارد الفضائي لتلقى المعلومات من سفن الفضاء
Information Science.
Information Systems.
Computer Systems.
Automatic Control Systems.
Information Revolution.
Theory of Probability.
Information Processing.
Input.
Output.
Retreival.
Processing Cycle.
Information Traffic.
Central Processing Unit (C.P.U.).
Core Storage (Memory)
Control Section.
Arithmatic - Logic Section.
Information Representation.
Binary System.
Decimal System.
Binary Digits.
Blt.
Byte.

1 - علم المعلومات
2 - نظم المعلومات
3 - نظم الحواسب
4 - نظم التحكم الآلي
5 - تفهئة المعلومات
6 - نظرية الاحتمالات
7 - معالجة المعلومات
8 - التقنية أو إدخال المعلومات
9 - إخراج النتائج
10 - استرجاع المعلومات
11 - دورية معالجة المعلومات
12 - حركة المعلومات
13 - وحدة تشغيل ومتحكم مركزي
14 - وحدة تخزين معلومات الذاكرة
15 - قسم التحكم
16 - قسم الحساب والمنطق
17 - تمثيل المعلومات
18 - النظام الثنائي
19 - النظام العشري
20 - الأرقام الثنائية
21 - رقم ثنائي (بت)
22 - مجموعة أرقام ثنائية (بيت)
Pigeonhole.
Punched Cards
Paper Tapes
Magnetic Tapes, Discs & Drums.

Analogue Computer.
Digital Computer.
Hybrid Computer.
Hardware.

Software.
Data Representation.
Input Peripherals
Core Storage & Processing.
Output Peripherals.
Punching.

Line Printer.
Graph Plotter.
Visual Display.
Numeric Punches.

Zone Punches.
Recording.

Read-Write Head.
Input-Output (I/O) Devices.

Photoelectric Cells.
Main Storage.
Auxilliary Storage.

Direct Access.
Sequential.
Core Storage.
Magnetic Permeability.
Sense Wire.
Inhibit Wire.
Access Time.
Numeric.
Alphameric.
Utility Programme.
Instructions.
Branching Instructions.
Loop.
Machine Language.
High Level Language.
Fortran "Formula Translation".
Cobol "Common Business Oriented Language".
PL/1 "Programme Language No.1".
Flow Chart.
Cybernetic.
Design Cycle.
Construction Cycle.
Work-Package.
Field Combat.
Weapon Systems.
Overlap.
S.A.G.E. "Semi-Automatic Ground Environment".
Igloo White.
Blind Attack.
Training and Technical Supervision

Weapon Systems.
Complete Systems.
Drones.
Platforms.
Equipments.
Operations Research.
Combat Modelling.
Operation Research Group.
Syntac.

الTimeInterval

الرقم الإبداعي ٣٧٠ / ٩٩
الترقيم الدولي ٠ ٢٣٩ - ١٧٢ - ٩٧٧
المؤلف والكتاب

المؤلف:

البحث ضابطًا بالقوات المسلحة المصرية عام 1954، تقلد مراكز قيادية متعددة، مسؤولة، في مجال التدريس، والبحث العلمي العسكري، والتوصية، والإنجازات الحربية، أنجز العديد من الدراسات والبحوث، في فروع العلم والفن العسكري المختلفة، وفي التكنولوجيا الحربية، ثم نشرها في الدوريات المتخصصة، في مصر، وفي الخارج، بالبلاد العربية والأجنبية.

الكتاب:
يدين التقدم الحضاري، الذي يشهده غالبًا الحاضر، بالفضل الكبير، لنظم المعلومات، التي حققت، بما أنجح لها من إمكانات الحواسيب، ونظم التحكم الآلي، إنجازات ضخمة، متنوعة، في مجالات الحياة على الأرض، وفي الفضاء الخارجي، وهو من متناوله، جمعًا وتفصيلًا، صفحات هذا الكتاب.

لقد أصبح مقياس تقدم أم، أي مجتمع اليوم، رهنًا بما يعدّه على نظام المعلومات، في التخطيط لمشاريعه، في الحاضر، وفي المستقبل.

وكم أن كان للاث أصل الفضل الأول، في توفر الجهد الطبيعي لدراسات الإنسان، في سبيل حياة أفضل، فالبيوم، يرجع الفضل، لنظم الحواسيب والتحكم الآلي، في توفر الكثير من الجهد الذهني له، للطعوم لأفكار رجب، ومن ثم، جدًا جنات هذا الكون، الأمر الذي سوف يكمل له، تحقيق المزيد من الإنجازات، التي سوف ترتقي بقيمة الحضارية، إلى درجات طموحة، لا تعلم مداها إلا الله.

دار طباعة للطباعة
12 شارع نور (لافلوف) القاهرة